



# Compositional generalisation in LLMs through multilingual lenses

Dieuwke Hupkes  
*Meta*

# Compositionality decomposed, how do neural networks generalise?

<https://www.jair.org/index.php/jair/article/view/11674>

## IJCAI-JAIR Awards

The Annual IJCAI-JAIR Best Paper Prize is awarded to an outstanding paper published in JAIR in the preceding five calendar years. The prize committee is comprised of associate editors and members of the JAIR Advisory Board; their decision is based on both the significance of the paper and the quality of presentation. The recipient(s) of the award receives a prize of US\$500 (to be split amongst the authors of a co-authored paper). Funding for this award was provided by the International Joint Conferences on Artificial Intelligence.

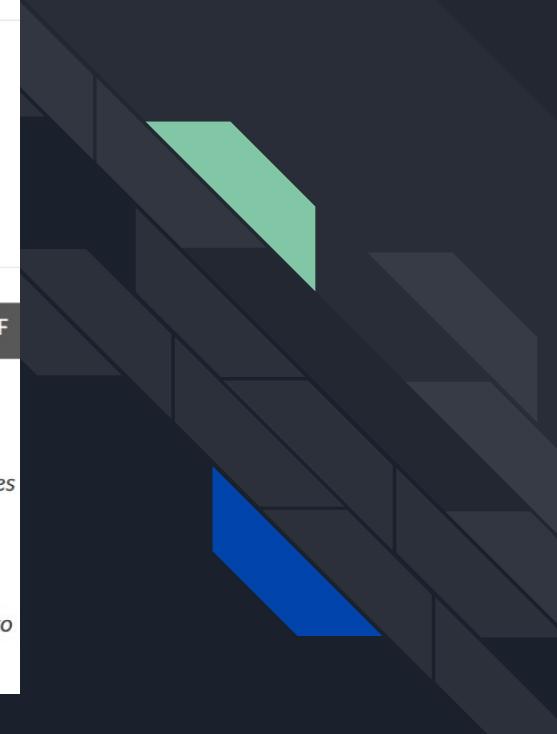
### Compositionality Decomposed: How do Neural Networks Generalise?

2025 Prize

Dieuwke Hupkes, Verna Dankers, Mathijs Mul and Elia Bruni

PDF

*Citation: This work addresses the fundamental question of whether neural networks can exhibit compositional generalization, a cornerstone of human cognition and symbolic reasoning. Bridging philosophical and linguistic theories with contemporary machine learning, the authors propose a suite of five rigorous, task-independent tests that define and probe compositional generalization along multiple dimensions. Their methodology reveals key strengths and weaknesses in widely-used neural architectures and has become a touchstone for research on the limits of deep learning. This work has helped establish compositional generalization as a central empirical topic in AI and continues to influence both theoretical inquiry and practical model evaluation.*



# Compositionality decomposed, how do neural networks generalise?

<https://www.jair.org/index.php/jair/article/view/11674>



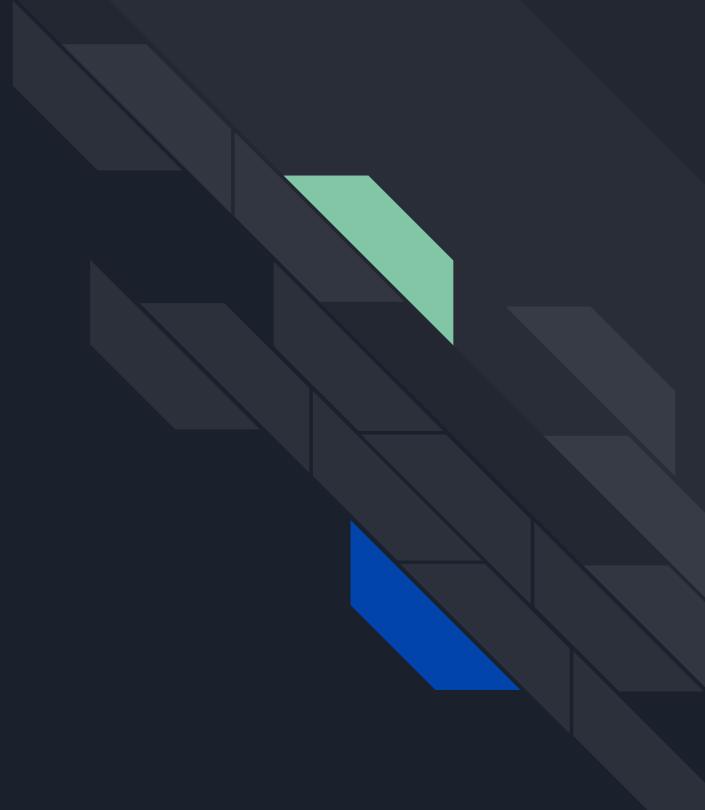
Verna Dankers



Mathijs Mul



Elia Bruni



# The data

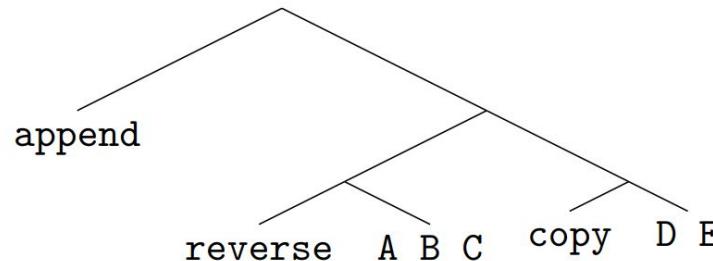
*PCFG SET = PCFG-generated String Edit Task*

**Unary functions:** reverse, swap, copy, ...

**Binary functions:** prepend, append, remove\_first, ...

**Characters:** A, B, C, ...

append reverse A B C , copy D E  $\Rightarrow$  C B A D E



# The tests

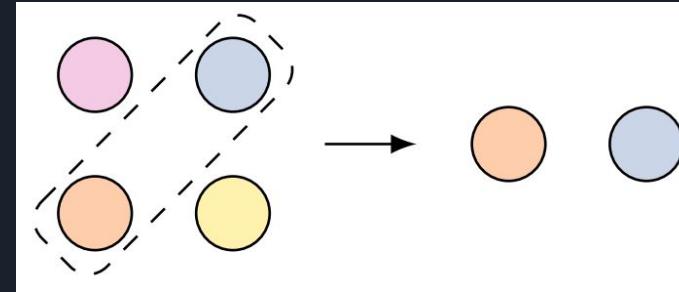
Systematicity

Productivity

Substitutivity

Localism

Overgeneralisation



withhold function  
compositions from training  
swap repeat  
append remove\_second  
repeat remove\_second  
append swap

# The tests

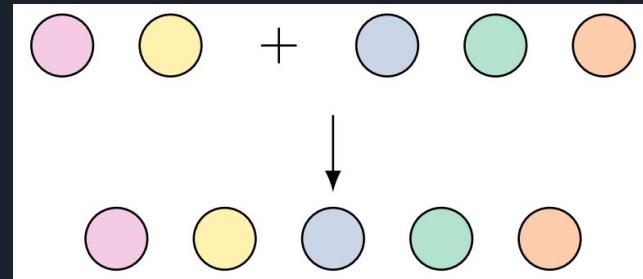
Systematicity

Productivity

Substitutivity

Localism

Overgeneralisation



train: up to 8  
functions  
test: 9+ functions



# The tests

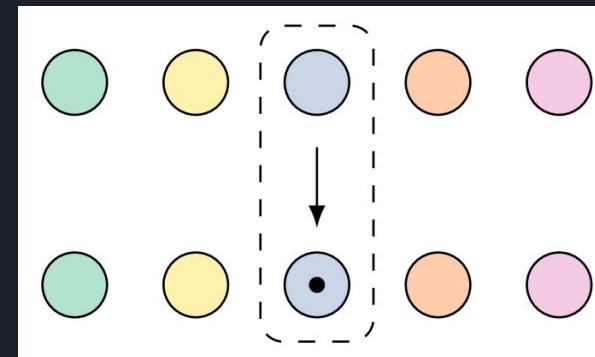
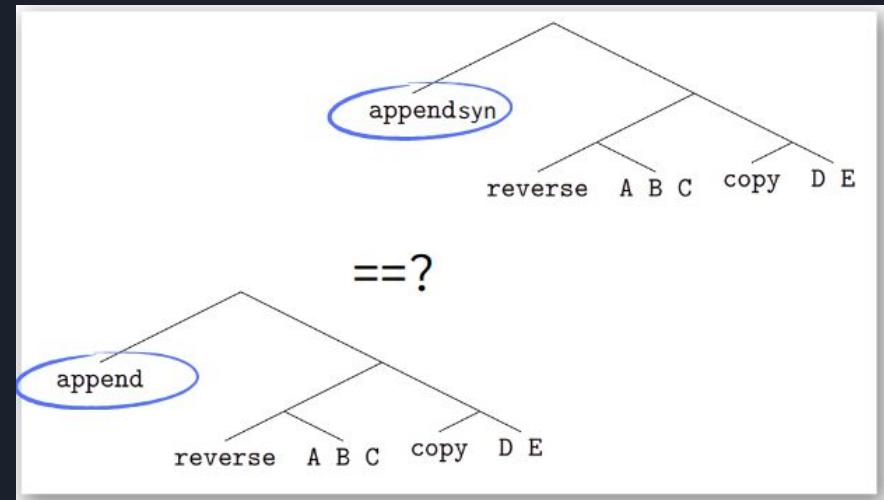
Systematicity

Productivity

Substitutivity

Localism

Overgeneralisation



# The tests

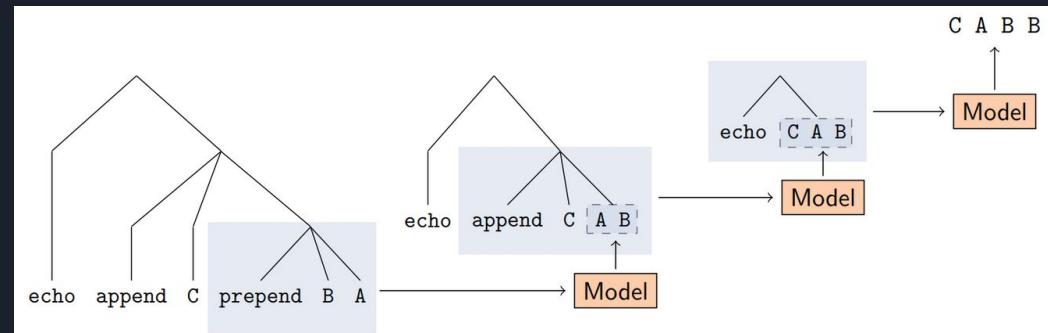
Systematicity

Productivity

Substitutivity

Localism

Overgeneralisation



# The tests

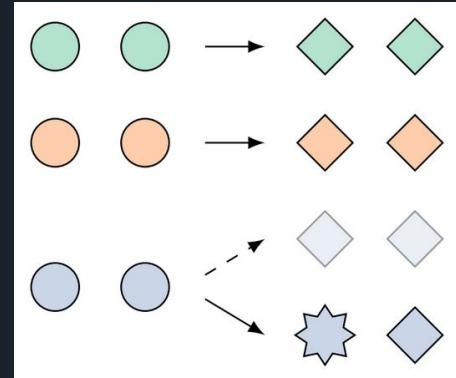
Systematicity

Productivity

Substitutivity

Localism

Overgeneralisation



introduce non-compositional exceptions to  
study generalisation vs memorisation

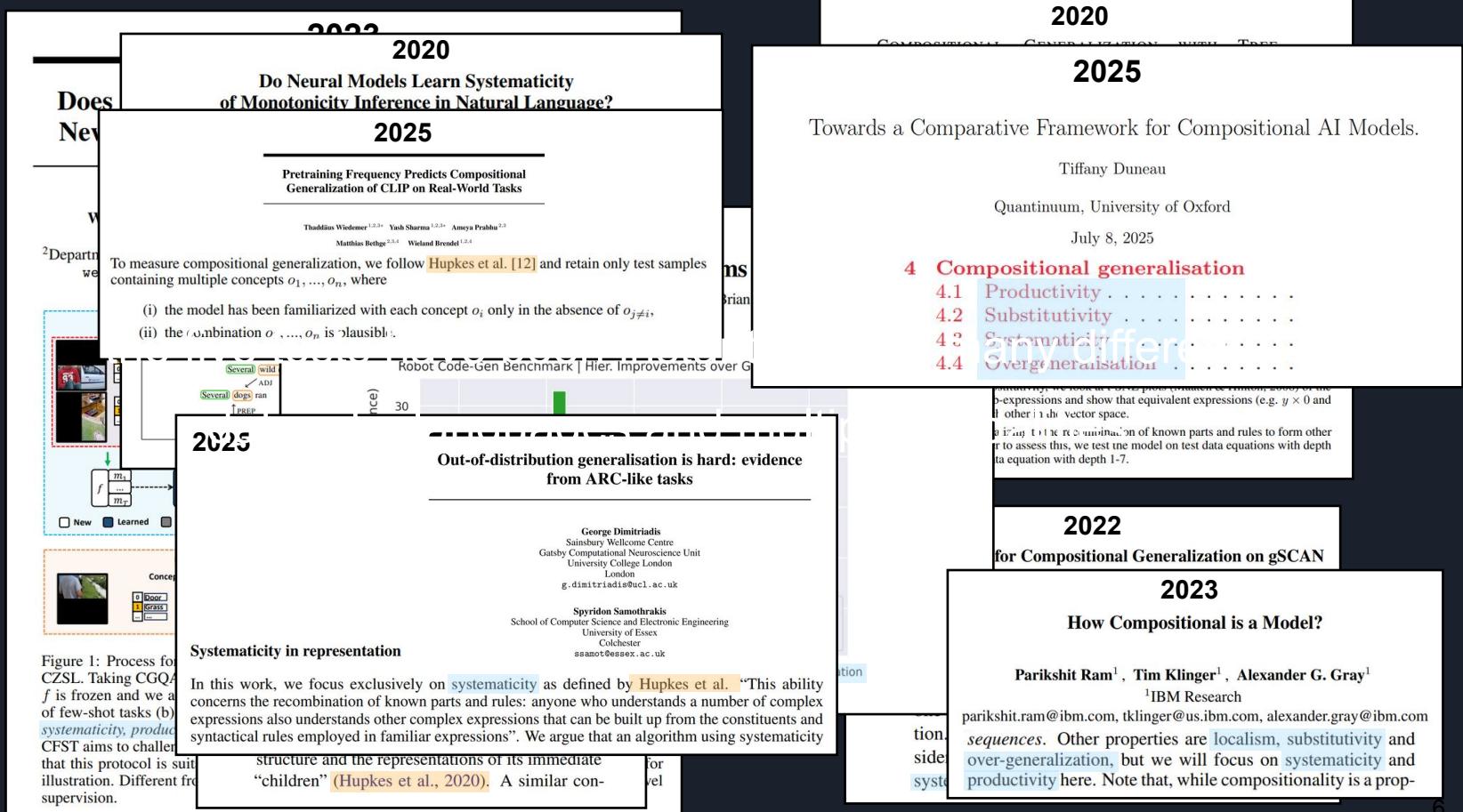
| Input                          | Remapped to                    |
|--------------------------------|--------------------------------|
| reverse echo A B C             | echo copy A B C                |
| prepend remove_first A , B , C | remove_second append A , B , C |
| echo remove_first A , B C      | copy append A , B C            |
| prepend reverse A B , C        | remove_second echo A B , C     |

| Experiment                                   | LSTMS2S         | ConvS2S         | Transformer     |
|----------------------------------------------|-----------------|-----------------|-----------------|
| Task accuracy*                               | $0.79 \pm 0.01$ | $0.85 \pm 0.01$ | $0.92 \pm 0.01$ |
| Systematicity*                               | $0.53 \pm 0.03$ | $0.56 \pm 0.01$ | $0.72 \pm 0.00$ |
| Productivity*                                | $0.30 \pm 0.01$ | $0.31 \pm 0.02$ | $0.50 \pm 0.02$ |
| Substitutivity, <i>equally distributed</i> † | $0.80 \pm 0.00$ | $0.95 \pm 0.00$ | $0.98 \pm 0.00$ |
| Substitutivity, <i>primitive</i> †           | $0.60 \pm 0.01$ | $0.58 \pm 0.01$ | $0.90 \pm 0.00$ |
| Localism†                                    | $0.46 \pm 0.00$ | $0.59 \pm 0.01$ | $0.54 \pm 0.02$ |
| Overgeneralisation*                          | $0.68 \pm 0.04$ | $0.79 \pm 0.06$ | $0.88 \pm 0.07$ |

**Compositional evaluation shows  
large performance drops  
compared to i.i.d. evaluation...**

...and models don't behave local, don't treat synonyms  
as equals, and can memorise exceptions to rules

# Ripple effects: wide adoption of tests



# *And a successful follow-up, rethinking strict compositional generalisation for natural language*

[L] 31 Mar 2022

## **The Paradox of the Compositionality of Natural Language: A Neural Machine Translation Case Study**

**Verna Dankers**

ILCC, University of Edinburgh  
vernadankers@gmail.com

**Elia Bruni**

University of Osnabrück  
elia.bruni@gmail.com

**Dieuwke Hupkes**

Facebook AI Research  
dieuwkehupkes@fb.com

### **Abstract**

Obtaining human-like performance in NLP is often argued to require compositional generalisation. Whether neural networks exhibit this ability is usually studied by training models on highly compositional synthetic data. However, compositionality in natural language is much more complex than the rigid, arithmetic-like version such data adheres to, and artificial compositionality tests thus do not allow us to determine how neural models deal with more realistic forms of compositionality. In this work, we re-instantiate three compositionality tests from the literature and reformulate them

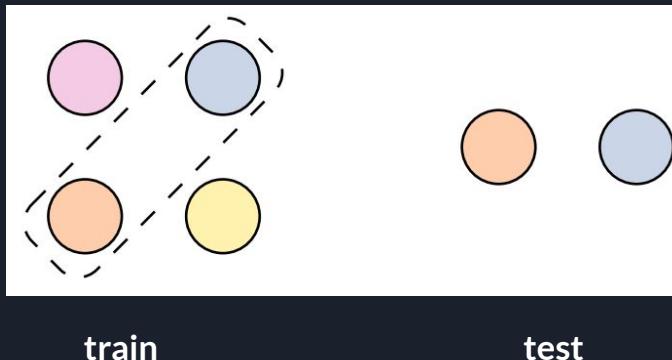
to play an essential role in how humans understand language, but whether neural networks also exhibit this property has since long been a topic of vivid debate (e.g. Fodor and Pylyshyn, 1988; Smolensky, 1990; Marcus, 2003; Nefdt, 2020).

Studies about the compositional abilities of neural networks consider almost exclusively models trained on synthetic datasets, in which compositionality can be ensured and isolated (e.g. Lake and Baroni, 2018; Hupkes et al., 2020).<sup>2</sup> In such tests, the interpretation of expressions is computed completely *locally*: every subpart is evaluated independently – without taking into account any external

**But...**  
**compositional evaluation**  
**has changed**

# Compositional generalisation in LLMs

*Controlled train-test splits*



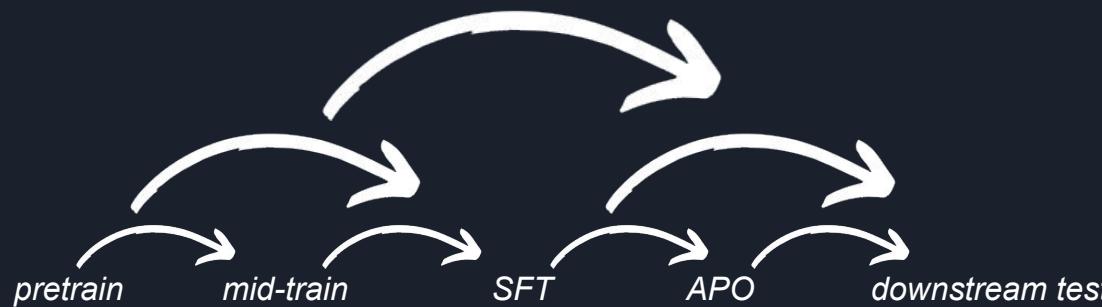
# Compositional generalisation in LLMs

*Controlled train-test splits*

✗

*Access to or knowledge about the training data*

✗✓



# Compositional generalisation in LLMs

*Controlled train-test splits*

✗

*Access to or knowledge about the training data*

✗✓



# Compositional generalisation in LLMs

*Controlled train-test splits*

✗

*Access to or knowledge about the training data*

✗✓

*Tools to analyse the training data*

?



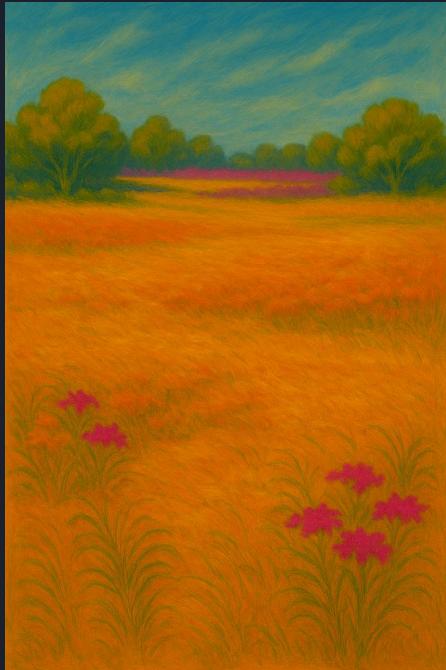
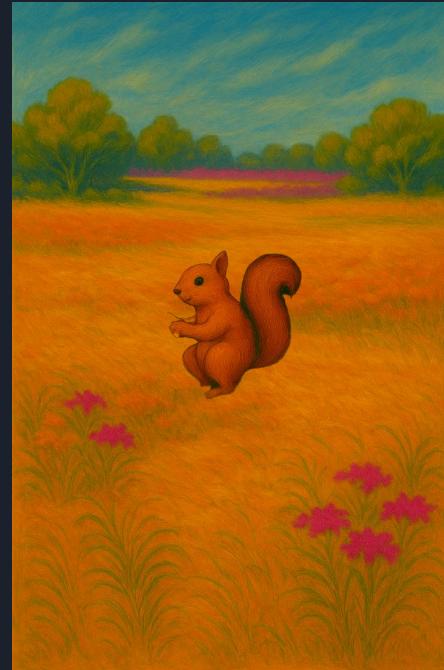
# Compositional generalisation in LLMs

|                                                       |    |
|-------------------------------------------------------|----|
| <i>Controlled train-test splits</i>                   | ✗  |
| <i>Access to or knowledge about the training data</i> | ✗✓ |
| <i>Tools to analyse the training data</i>             | ?  |
| <i>Clear separation of form and meaning</i>           | ✗  |

So... how do we evaluate (compositional) generalisation in LLMs?

Do we still need to evaluate compositionality?

In an orange meadow, a squirrel is driving a carriage  
with six wheels



Matt kicked the bucket after which water spilled all over. Is Matt dead or alive? Respond with one word only.



思 Thought for 13 seconds ▾

dead





# Compositional generalisation in LLMs

|                                                       |    |
|-------------------------------------------------------|----|
| <i>Controlled train-test splits</i>                   | ✗  |
| <i>Access to or knowledge about the training data</i> | ✗✓ |
| <i>Tools to analyse the training data?</i>            | ?  |
| <i>Clear separation of form and meaning</i>           | ✗  |

So... how do we evaluate (compositional) generalisation in LLMs?



## Using multilingual consistency to evaluate (compositional?) generalisation

- Disentanglement of form and meaning
- Natural distribution shifts
- “Free” meaning preserving transformations

# From Form(s) to Meaning: Probing the Semantic Depths of Language Models Using Multisense Consistency

<https://direct.mit.edu/coli/article/50/4/1507/123794/From-Form-s-to-Meaning-Probing-the-Semantic-Depths>



Xenia Ohmer



Elia Bruni



# Consistency across 'representations'

Example

## Original input

Paraphrase detection (en)

*Do the following sentences have the same meaning? Sentence 1: "The Tabaci River is a tributary of the River Leurda in Romania." Sentence 2: "The Leurda River is a tributary of the River Tabaci in Romania." Please answer with "yes" or "no".*

## Generate another sense, using the model

Translate the instruction

Model

Translate the input sentences

Model

"yes"

Answer

## Alternative sense

Paraphrase detection (de)

*Haben die folgenden Sätze die gleiche Bedeutung? Satz 1: "Der Fluss Tabaci ist ein Nebenfluss des Flusses Leurda in Rumänien." Satz 2: "Der Fluss Leurda ist ein Nebenfluss des Flusses Tabaci in Rumänien." Bitte antworten Sie mit "Ja" oder "Nein".*

Model

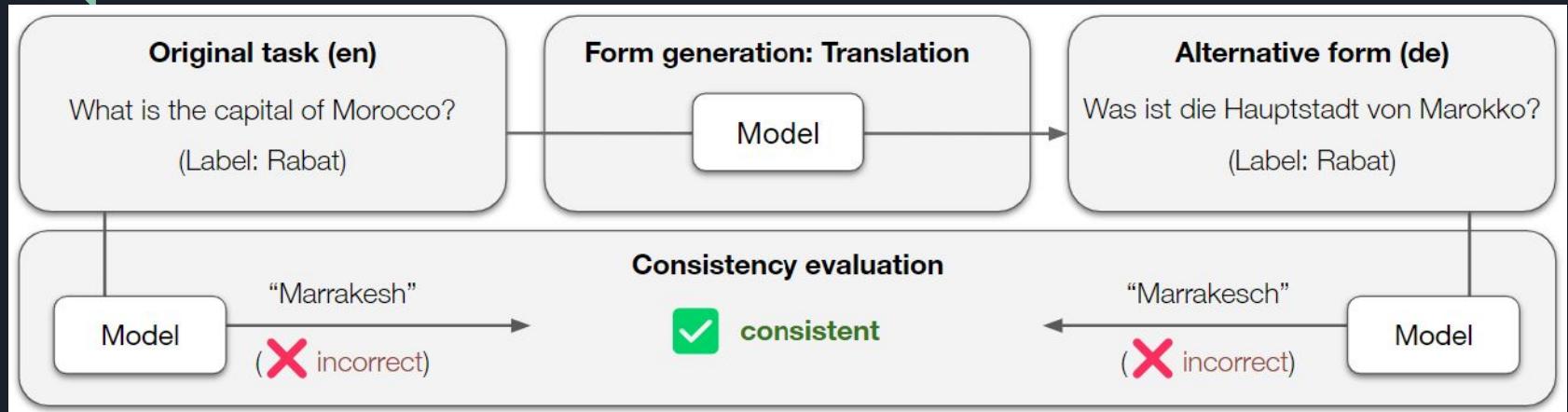
"ja"  
(yes)

Answer

Evaluate consistency

*From form (s) to meaning: Probing the semantic depths of language models using multisense consistency  
Separating form and meaning: Using self-consistency to quantify task understanding across multiple senses*  
Ohmer et al. (2023, 2024)

# Multisense consistency paradigm

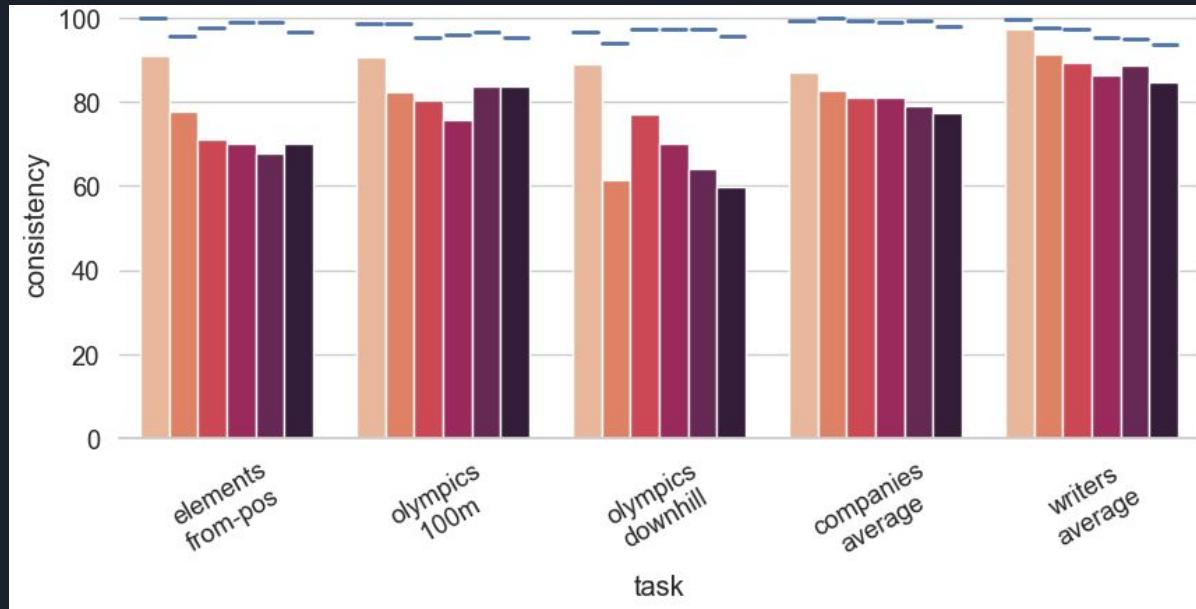


If a model is not self consistent (correct or incorrect) across the two questions, can it be compositional?

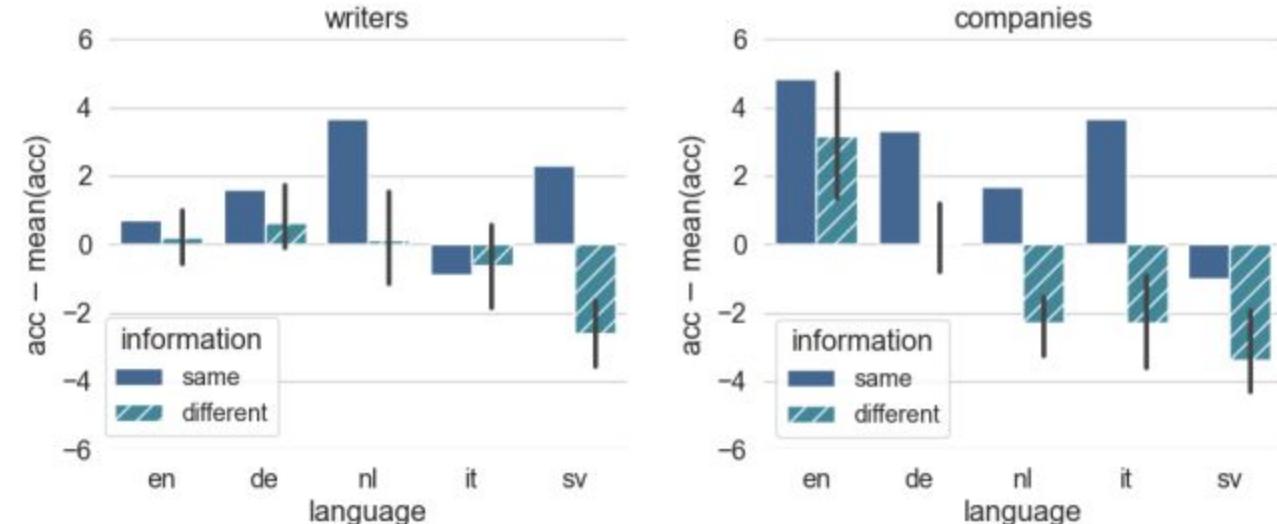
# Datasets

| dataset   | subtask       | N                    | template / example                                                                          |
|-----------|---------------|----------------------|---------------------------------------------------------------------------------------------|
| ELEMENTS  | FROM-ELEMENT  | 90                   | "What is the atomic number of the chemical element He?"                                     |
|           | FROM-POSITION | 90                   | "What is the atomic number of the chemical element in period 5 and group 7?"                |
| OLYMPICS  | 100M          | 148                  | "Who won the gold medal in the men's 100 meters at the 2000 Summer Olympics?"               |
|           | DOWNHILL      | 117                  | "Who won the bronze medal in the women's downhill competition at the 1976 Winter Olympics?" |
| WRITERS   | -             | $186 \times 5 = 930$ | "In what year was the writer Friedrich Schiller born?"                                      |
| COMPANIES | -             | $100 \times 5 = 500$ | "In what city does Airbus SE have its headquarters?"                                        |

# ChatGPT results: Simple facts



→ Even on simple factual questions the model generates inconsistent responses.



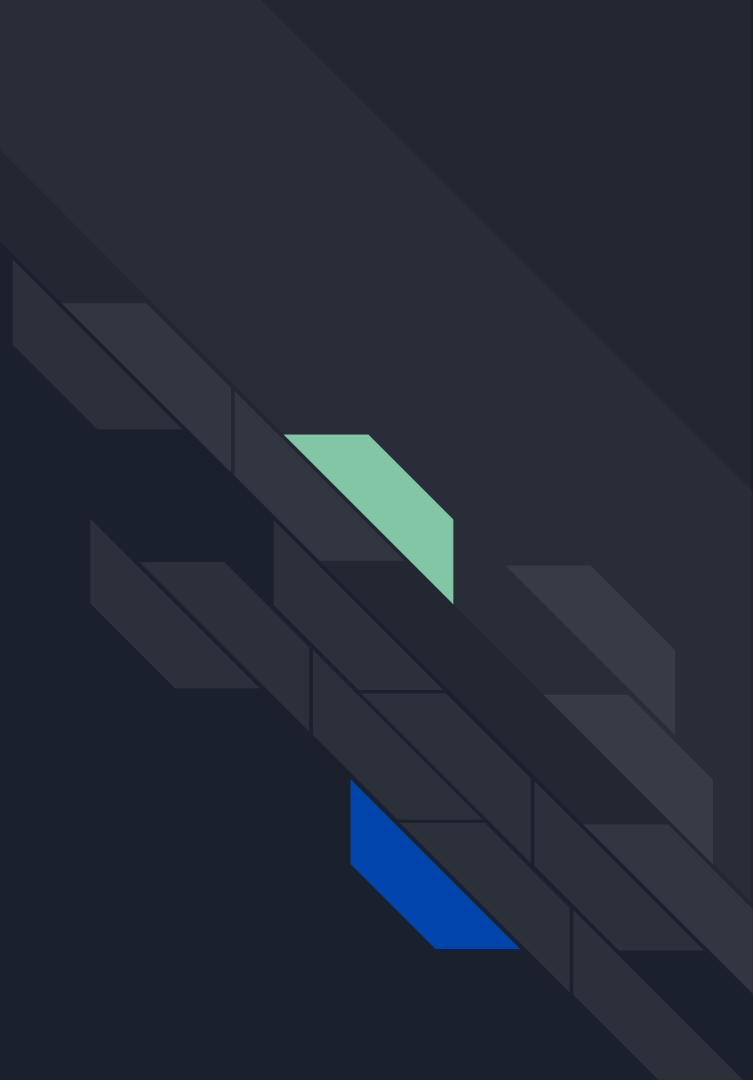
**Figure 8: Language-dependent knowledge for the SIMPLE FACTS dataset.** For each language, we compute how its accuracy when asked about information matching that language compares to its accuracy when asked about information not matching that language (e.g. asking about Dutch writers in Dutch vs in Swedish), compared to the overall averages for those groups. Generally, the model has higher accuracy when the prompt language and requested information pertain to the same country (plain bars) than when it is asked in a non-matching language (hatched bars).

# Consistency for correct and incorrect examples

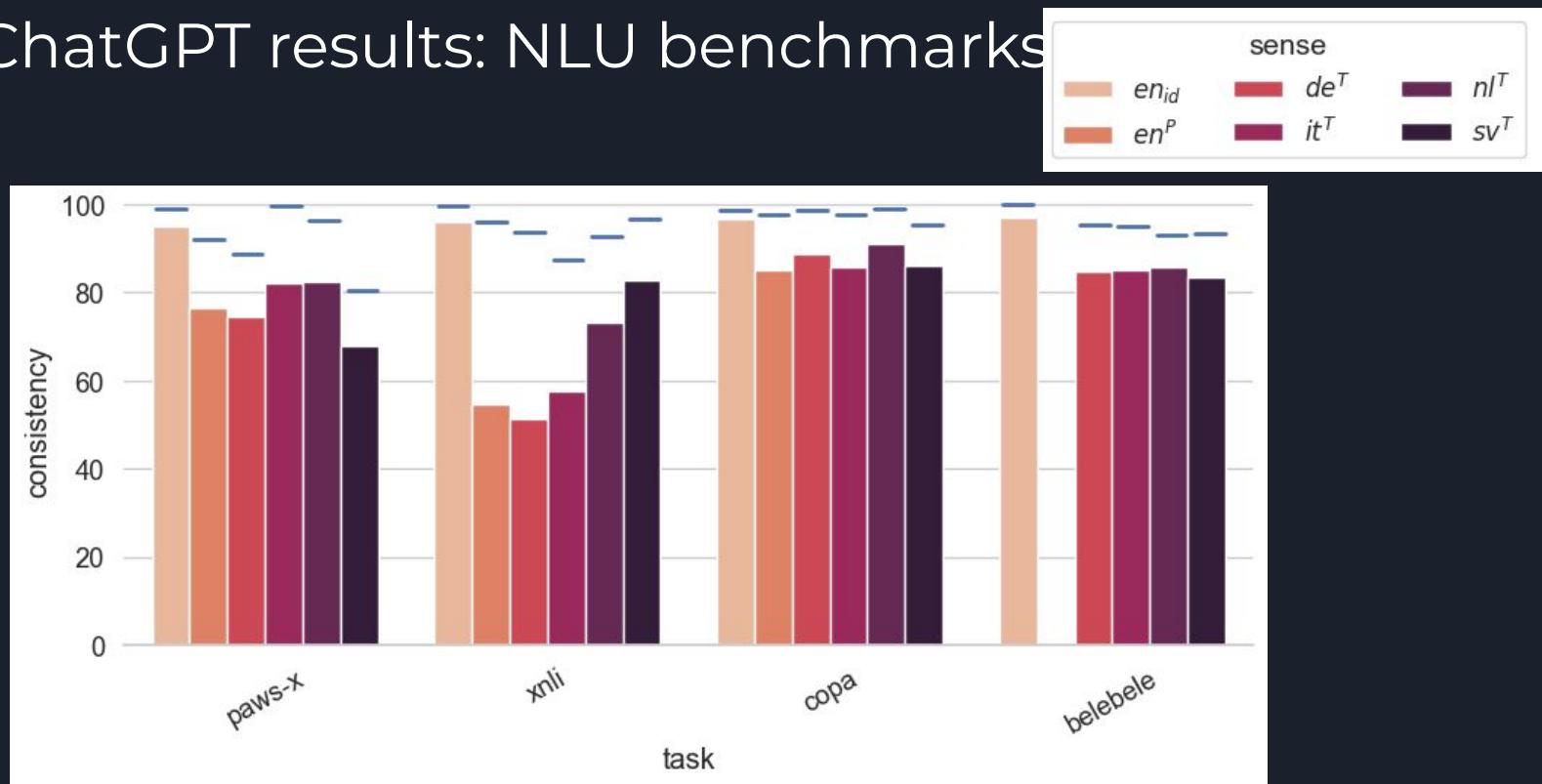
|        |                       | $T_{en}$ | $T_{en \rightarrow de}$ | $T_{en \rightarrow zh}$ | $T_{de \rightarrow en}$ | $T_{zh \rightarrow en}$ |
|--------|-----------------------|----------|-------------------------|-------------------------|-------------------------|-------------------------|
| PAWS-X | consistency all       | 0.99     | 0.84                    | 0.76                    | 0.86                    | 0.70                    |
|        | consistency correct   | 0.99     | 0.89                    | 0.78                    | 0.92                    | 0.82                    |
|        | consistency incorrect | 0.98     | 0.67                    | 0.71                    | 0.72                    | 0.52                    |
| XNLI   | consistency all       | 0.98     | 0.74                    | 0.67                    | 0.63                    | 0.67                    |
|        | consistency correct   | 0.99     | 0.77                    | 0.71                    | 0.83                    | 0.80                    |
|        | consistency incorrect | 0.96     | 0.66                    | 0.57                    | 0.45                    | 0.50                    |

Table 5: Detailed consistencies for the core experiment as well as for a baseline of two different runs with  $T_{en}$ . Listed are the consistency across all responses (consistency all), as well as the consistency across responses that were correct (consistency correct) and responses that were incorrect (consistency incorrect) on the source task.

# Consistency on NLU benchmarks



# ChatGPT results: NLU benchmarks



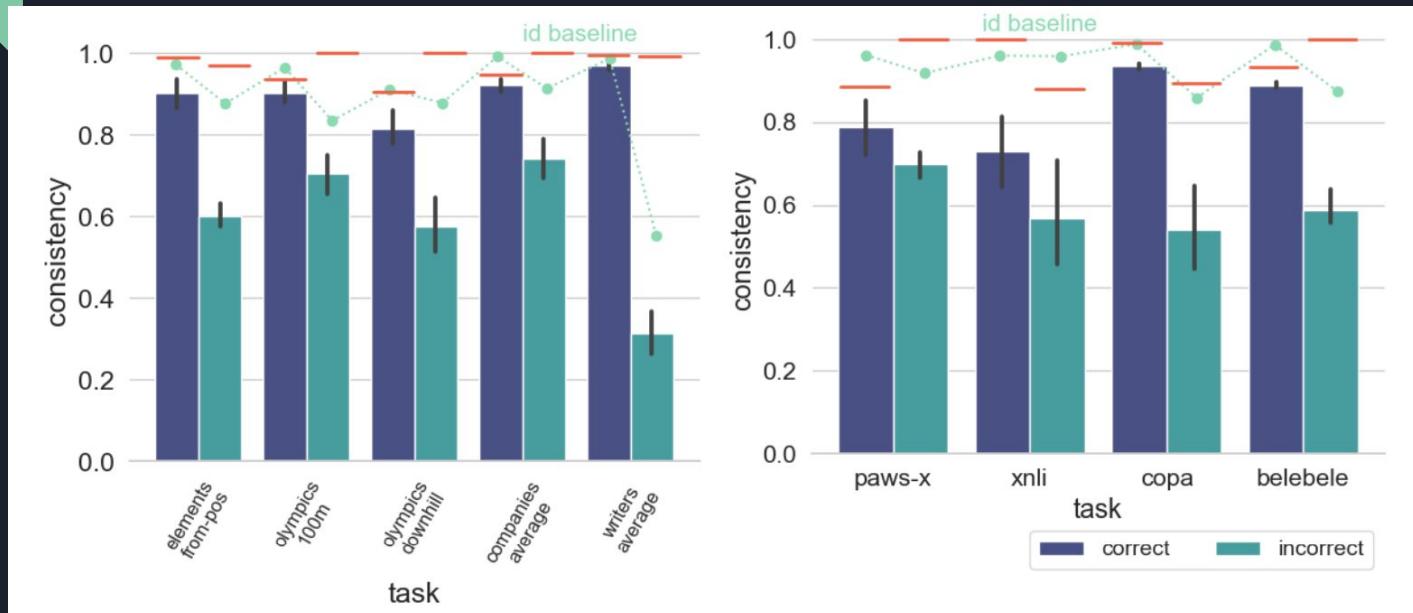
→ These inconsistencies are also evident on standard NLU benchmarks for paraphrase detection, NLI, commonsense reasoning, and knowledge tests.

# Consistency and translation quality

|          |                 | bleu | rouge1 | rouge2 | rouge-l | comet-22 |
|----------|-----------------|------|--------|--------|---------|----------|
| paws     | de <sup>T</sup> | 57.5 | 0.81   | 0.65   | 0.77    | 0.85     |
| xnli     | de <sup>T</sup> | 41.9 | 0.69   | 0.49   | 0.66    | 0.84     |
| copa     | it <sup>T</sup> | 40.9 | 0.66   | 0.45   | 0.64    | 0.86     |
| belebele | de <sup>T</sup> | 41.1 | 0.69   | 0.46   | 0.63    | 0.84     |
|          | it <sup>T</sup> | 38.1 | 0.69   | 0.44   | 0.61    | 0.85     |
|          | nl <sup>T</sup> | 34.3 | 0.68   | 0.40   | 0.57    | 0.85     |
|          | sv <sup>T</sup> | 44.0 | 0.73   | 0.53   | 0.68    | 0.86     |

We consider the quality of the translation to different senses, according to commonly used metrics. All scores are high, suggesting that the model's inconsistencies are not driven by an inability to translate.

# Consistency and correctness



Examples that are consistent and incorrect provide stronger evidence for a form-independent meaning understanding than consistent correct examples. The large difference between consistent correct and consistent incorrect thus indicates that some of the consistent correct examples were correct independently.

# MultiLoKo: a multilingual local knowledge benchmark for LLMs

<https://arxiv.org/abs/2504.10356>



Nikolay Bogoychev

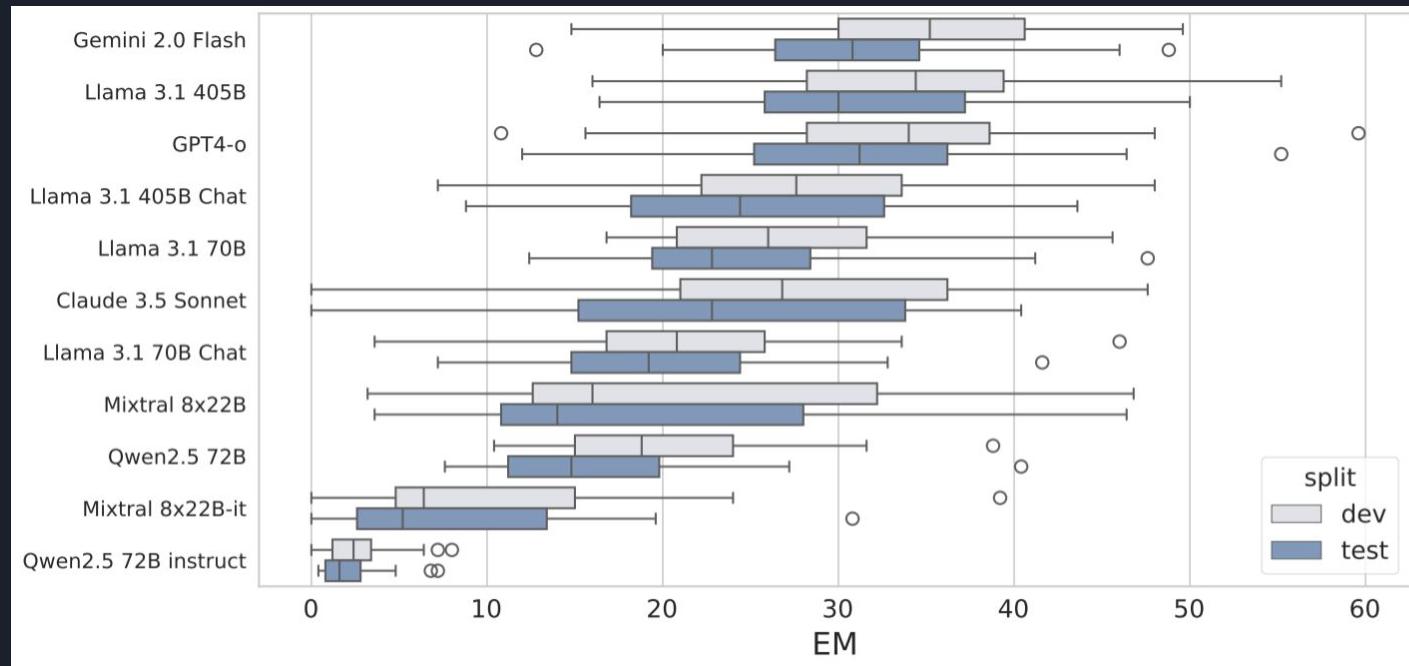


# MultiLoKo: a multilingual local knowledge benchmark for LLMs

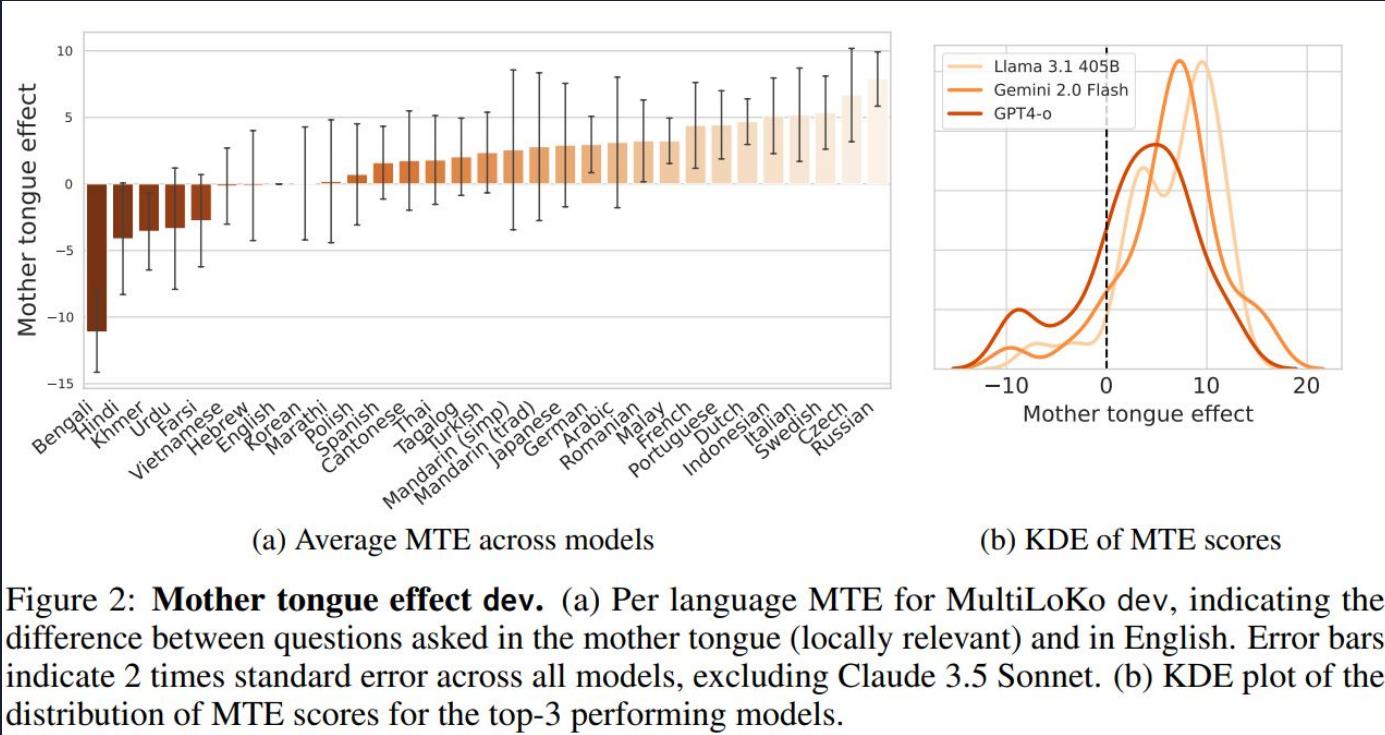
- 31 languages
- 500 questions per language, spread out over a validation and test set
- Sourced independently for each language, thus pertaining to locally relevant knowledge
- Includes human translations as well as machine translations (GT) for all non English language back to English, and for the English data to all other languages

<https://huggingface.co/datasets/facebook/multiloko>

# Models don't perform well, and the split is OOD

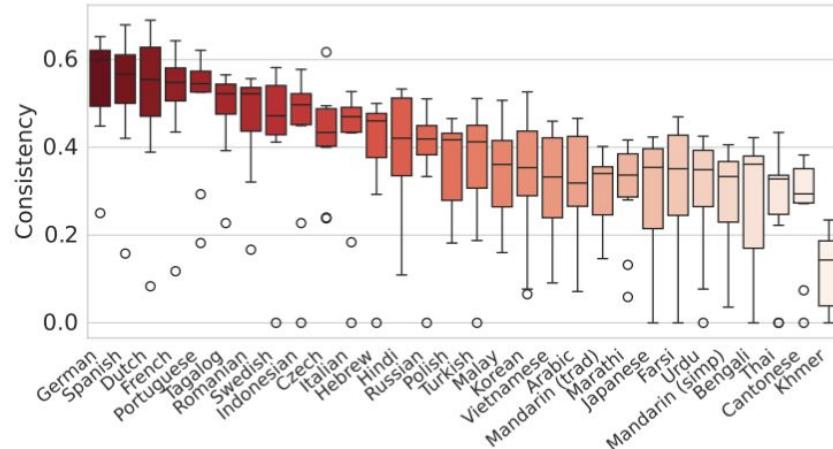


# Poor disentanglement between form and meaning



| Model                | Consistency |
|----------------------|-------------|
| Gemini 2.0 Flash     | 0.46± 0.04  |
| Llama 3.1 405B       | 0.46± 0.04  |
| Llama 3.1 70B        | 0.45± 0.03  |
| GPT4-o               | 0.45± 0.05  |
| Llama 3.1 405B Chat  | 0.42± 0.04  |
| Qwen2.5 72B          | 0.40± 0.04  |
| Llama 3.1 70B Chat   | 0.40± 0.04  |
| Mixtral 8x22B        | 0.36± 0.05  |
| Mixtral 8x22B-it     | 0.21± 0.05  |
| Qwen2.5 72B instruct | 0.08± 0.03  |

(a) Consistency scores per model



(b) Consistency scores per language

Figure 3: **Consistency results dev.** (a) Average per-model consistency scores,  $\pm 2$  times the standard error across languages. (b) Boxplot of model consistency scores per language, indicating the relative overlap of correctly answered questions when asked in the mother tongue vs in English.



# Conclusion

- Using “traditional” compositionality tests is sheer impossible for LLMs
- With multilinguality we can assess if there is disentanglement between form and meaning, and rely on natural distribution shifts, for now...
- Tests utilising this suggest that there is still some improvements to be made
- What is next?

# Thanks!

Dieuwke Hupkes  
*Meta*

[www.dieuwkehupkes.nl](http://www.dieuwkehupkes.nl)  
dieuwkehupkes@meta.com